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Abstract—The performance of broad-band low-noise low-dc-
power-consumption cryogenic amplifiers have been studied in de-
tail with emphasis on minimizing the power consumption and op-
timizing the amplifier performance at cryogenic temperature. A
general approach is presented for the modeling and amplifier de-
sign, which helps in minimizing the power consumption and op-
timizing the performance of the amplifier. A noise temperature
below 9 K and 22-dB gain was experimentally obtained in the fre-
quency range of 4-8 GHz with a total power consumption of 4 mW
with commercial GaAs transistors.

Index Terms—Empirical large-signal models, FET, FET noise
models, modeling, noise model extraction, noise parameter.

I. INTRODUCTION

nP TRANSISTOR devices are known for their very goo§9-1- g VersusPy. for InP transistor.
I noise performance and low dc power consumption [1]-[5].

In recent years, the performance of microwave GaAs and InP 120
transistors has improved significantly and many successful de-
signs with high performance have been reported [1]-[5]. GaAs

devices have also obtained improved performance and espe- _
cially the metamorphic InAIAsGaAs on GaAs substrate have 2
improved very much [6]. E

This, together with the existence of simple and accurate

models [7]-[13], has improved the quality of microwave 40

cryogenic amplifiers and excellent results have been achieved i
in recent years. For many different applications, such as deep
space communication, a low-dc-power dissipation can be a
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crucial requirement for the system. 06 04 02 0 02 04
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II. DEVICE MODELING Fig. 2. g.. versusP,. for GaAs FET MGF4419G.
From on-wafer measurements of deparameter and noise 140 Tttt
measurements both at room and cryogenic temperatures, noise

models parameters [7]-[14] were extracted and subsequently 120 1
used for the amplifier design. The transconductance of both InP
and GaAs transistors increases at low temperatures (Figs. 1 and F
2). Thus, a very high transconductance can be obtained at low € &0
drain voltages and low dissipated power (Fig. 3). As can be seen g
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Fig. 4. 14, Ry for InP transistor.
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in Fig. 3, high transconductance can be reached with 2-3-m\ 7 1.,y ) for MGF4419G.f = 6 GHz, I, = 5 mA.
dissipated dc power and a drain voltage beldw = 0.8 V.

At very low drain voltagesVys < 0.3-0.4 V, the output con- 0.0045 s e 70
ductance is rather high and this can produce a significant reduc- \ [ ttissma] ]
tion of transistor gain (Figs. 4 and 5). Also, at very &y, 0.004 [\ : MGF4419G
almost all other transistor parameters, i@, Cad, g f1r - - - » % Q. td=5mA ]
vary significantly. 00088 ——\—% ——vg=08]] %

Fig. 6 shows the measured; , S22, andl'yy,, for GaAs tran- g \ '-_ \ ". \ ~-an-Vg=06 | ] g
sistor MGF4419G (Mitsubishi). From the imaginary parkef _E_o'ooa; i \ Y ——Vg=04f] &
andYi» (Figs. 7 and 8), it can be seen that the capacitive part of 0.0025 \ YR i\ m=8==Vg=0.2]] 60
the transistor changes significantly at drain voltaygsbelow : ]
0.4 V. 0.002 |

This situation is similar for InP high electron mobility -
transistors (HEMTs) and can create problems in the design 0.0015 Loias

g -0.5 X 1
of broad-band amplifiers because of the large change upon Vds(V)

bias(Vqs) of the transistor paramete¥§:, Y12, gm, fr and the rig 8. Lu(v1.), £, for MGF4419G.f = 6 GHz, 14, = 5 mA.
respective sensitivity of amplifier performance.
Fig. 9 shows the equivalent circuit of the transistor and the Py T 1

main parameters are listed in Tables I-lll. The transconductance | L .
1 [}

m; Cgs, Cga, and Iy, depend strongly oy, and the conven- ! 1 ! Id

tional simplified (1) forf, will predict f, with significant error. lgi Ry | ] pI | Cdpi

We have found (2) to be more accurate [15] as follows: ¢ I P :
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1
. 2
[1 +(Rs + Rd)/Rds] + Cga - gm - (Rs + Ry) ) Fig. 9. Equivalent circuit of the transistor.
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TABLE | _
MGF4419G, 8 GHz .
'MGF4419G |
Vas=04 | en | 82 | In | Zp R | I R
1d=10mA | mS mS | K 2 Q K Q
T=300K 89.4 12 35 50+j101 15.2 2100 | 2
T=15K 83.6 9 4.5 | 20+j100 3.85 870 1.9
Id=5mA
Vas=1V | gn | &2 | Tn | Zom R | 1a R
Id=10mA | mS mS | K 0 Q K Q .
T=300K 89.0 74 | 30 57+j105 12.8 | 2750 1.8 S M
T=15K 85.8 64 | 3.7 | 234j104 3.1 1000 1.8 : 3 g M ¥
Id:SmA O | RSIGES I S UL U VS T RN R AP SO SN TR A OSSR S SIS
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TABLE I Fig. 10. Noise temperature for MGF4419G at 5 Gidz.= 50 2, 300 K.
m: model.e: experimental.
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56 22| 03 221|015 0.25 011251022 07 { 3.2 - I d=5m3a j Wl
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= L
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TABLE Il &I
Z20F
tm | Ka Kz | Kt w0 b ]
5 151 |04 | 120 . .
1 4
i FUUE U T N
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where Frequency (GHz)

2 Fig. 11. Noise temperature for MGF4419G at 18I, = 5 mA.
Gm = I Pr - sec h(Pl.Vgs) tanh(aVys)(1 4+ AVas)  (3)

— 2
gas = Ipk (1 + tanh(y))) (o(1 + AVas) sec h(ar - Vas) these measurements. This approach is particularly useful in
+ Atanh(aVy,)) (4) cryogenic noise model extraction.
Cys = Cusp + Cigso (1 + tanh[Prg + Piy - Vi) In order to precisely evaluate the noise model, a special pre-
matched circuit was designed. This is required since the noise
. (1 + tanh[Pgo + Po - Vds]) (5) . . . .
temperature, which can be obtained from the high-quality low-
Cga = Cgap + ngo(l + tanh[Pso — Ps; - Vds]) noise transistors both at room and at cryogenic temperatures,
- (14 tanh[Pyo + Py - Vgd)) (6) is very low [2-5 K (see Fig. 11)], which is of the order of the
Ios = Ipio - (1 +tanh(y)) tanh(aVas)(1 + AVis). (7) accuracy of a conventional noise measurement system. Itis also

difficult to use tuners at cryogenic temperatures and, in addition,

For details concerning this model, see [21] and [22]. As thbe designer can face stability problem since high-quality GaAs
drain voltage increases abovg, > 0.5V, the total gate ca- and InP transistors have very high gain when cooled. The use of
pacitance is nearly constafiti;) (Fig. 7),Y12 (Cqq) does not the pre-matching circuit solves many of these problems.
change significantly (Fig. 8), and the intringicfollows theg,, Using measured transistér-parameters and noise parame-
dependence and is reaching a maximum at a drain voltage s and taking into account the bias networks required to sta-
proximately equal to the knee voltage (where the drain voltagéize the transistor at cryogenic temperatures, a simple input
is just sufficient to saturate the carrier velocity). In order to smatching network is designed for the center frequency of in-
multaneously optimize the noise performance and minimize tterest. The transistor is bonded into the fixture. The bonding in-
dc power consumption, the noise models computed from tbactance, together with the input matching network, resonate
large-signal model can be used. This can also help to optimibe transistor at the center frequency of the pre-match circuit. In
device size for the desired frequency of operation becausethi study, we used GaAs chip transistors MGF4419G and dif-
parameters needed to calculate the noise parameters and disgent InP transistors. The gain from the single transistor is typ-
pated power are available from the noise and large-signal tracally 10—14 dB, which is why in order to improve the overall
sistor models [7]-[14], [21], [22]. accuracy of the noise measurements, a 26-dB room-tempera-

The dc andS measurements that are required to extract there low-noise amplifier is used to minimize the noise contribu-
small- and large-signal equivalent circuit were supplementédn of the system. Both the hot—cold load and cold attenuator
with 502 noise measurements [16] (Fig. 10). The main lineamethod were used for the noise measurements, and the accu-
nonlinear, and noise model parameters were extracted fromecy of the noise measurements is believed to be of the order
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Fig. 12. T, versusV,. for MGF4419G at 18 KV, = 0.8 V. Fig. 14. Tomin, Ru, Ta, Fy versusVy, for MGF4419G at 18 K.
10 - 1600 at temperaturé;, which is higher than the ambient temperature
+— Tmin (K) : Toratr- We have
9 | ==%=-Rn(ohm) — 1400
n -
78 Fldon, IS —o—i(Ghz) }| 1200 Ras = 1/gas = 1/In(1+tanh(¥)) (a1 +AVqs) - sech(Vg,)?
1) H
é 7L N ’,-. .............. 1 1000 —~ HAVas tanh(ans)).
= ! ‘ ; ! ] 2
> _-‘, o Vd=0an ............. 800 2 (42)
< ' =
'E A g It has been found from many experimental investigations that
N the Pospieszalski noise model is very accurate [3], [4], [6], [8],
[14], [19],[23] and that there is nearly linear dependencé of
versus drain current. Fig. 12 shows measured and modgled
and the fit is good.

In many circuit applications and particularly in the design of
Ids(mA) cryogenic amplifiers, when good quality transistors biased for
low-noise performance are used, the equivalent gate temper-
ature7, can be considered equal to the ambient temperature
T, = Tamb. If a global model is required]}, can be modeled

of 1 K. The accuracy of the noise measurements was evaluafgthg (10) since the main effect of the drain currenffyris the

by measuring the amplifiers at the Jet Propulsion Laboratofgating effect

(JPL), Pasadena, CA, the National Radio Astronomy Observa-

tory (NRAO), Charlottesville, VA, and Centro Astronomico de T, = Tomb (1+ (1+tanh(z/))) tanh(cr - Vg ) (14X - Vds))-

Yebes, Yebes, Spain. All were found to be similar within 1 K. (10)
As shown in Figs. 12-14I; follows thel,s dependence on

Vas andV; and, thus, the same type of dependencies as thosgq, petter accuracy, the model can be calibratdd.at 3 —

describing thelys can be used to describe tiig dependence 5 A (additional bias points). This means that a global model

[3], [7]._This allows us to use the coefficients extracted for th(’::"an be obtained with 2—3 noise measurements. When model pa-
large-signal current model in tti&; model (Table Il) and only ., eters are available, it is possible to optimize the amplifier

fit one more parameter, .., for the noise part as follows: 500 rding to the specifications for noise, gain, and power dissi-

Fig. 13. Toin, Ry, Ty, F; versusl,, for MGF4419G at 18 K.

pation
Ty = Tomb (1 +t, (1 ~+tanh(e) tanh(ans)(l—l—)\Vds)).
(8) Tmin = Zfi 9ds - Td “Tgs - Tg (11)
t
At the gate voltage for which the transconductance is at fi red
maximum,?y = 0, and forVy, = 0.6-0.7 V, for which Ropy = TV galu (12)

tanh(aVds) = 1[21], f; is maximum.7} is then equal to
In some harmonic-balance simulators, the default noise
Ty = T (1 + ) (9  model is the Pucel, Cappy [7]-[10] three-parameterR, C

. i o L model. Wheril;; and7}, are available parametef3 i, andC
The noise model defined in this way [see (4)-(9)] is, in fac

. . i A tan be found as
a large-signal representation of the Pospieszalski noise model.

The basic idea in the model [7] is that the channel resistance of 1, p - 9us Ty LR C= |R (13)

the transistors is producing noise as a resistdige working = gm Ay T 9on To
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This will work well with saturated drain voltages, but when T L8
Vis = 0andg,,, = 0, the singularity in (13) in every large-signal M1 ¢
model can cause convergence problem. This can become sign”
icant in the analysis of circuits operating at low drain voltages
such as resistive, drain mixers, switches, and other circuits ope
ating at low drain voltages. The problem can be solved by addin
a small quantity to the denominator that reflects the finite outpu
resistance of the FET or by replacing the functigrnianh with

g - Ch4
leTsz Cb2 Cb3 RbS—%ZVﬁ

Fig. 15. Two-stage amplifier schematic.

1/ tanh |aVy,| & 1/( tanh [aVgs| + 107 7)

~ 1+ a?/ cosh |aVy|* (14) .
. . . . . , 35 - 135
It is convenient to implement the noise models in the simu- | =¥ Gain (dB), BP1 | G_(26.8 4 1.1} dB}]
lator using noise current sources. In the MESFET and HEMTs, 30 | Gain (dB), BP2 ] 30
the main contributor to the noise is the drain current, but, in fact, et | ,;}1\ ]
this noise is higher than the pure Johnson noise generatig,by ¢ DA e 25 z
and this should be accounted for. The total output current con- 5,20 C G(24.3 +/4 1.0) d| 20 &
tributing to the noise is S - a5 =
S st ==¥==Noise (K), BP1 IE 155
= t| =====Noise (K}, BP2 v
Lagn = as| + |Igd|. (15) " - Tavg=8.46K |¢' 10
The noise current generators connected at the input and output, v e, e P’ F==="] ]
in Fig. 9 IS N e WL YORE £
as in Fig. 9, are 5F S v+ 5
o Tavg=5.2K ]
—92 Lo o b o Ve e v b vy o by by
Lin = 467 (w - 107%) /Kt Laow + K2 L3, 0 b b0
Iy = 4kT(Ig + Idm/Kngl) . (2w . 10_2) (16) Frequency [GHz]

where K51, Kna1 and Kyqo are fitting coefficients andv is  Fig. 16.  Gain and noise of the amplifier at 18 BP, : Vi = 2.2V, Ve
. . . - . . . ‘ — . — [rd 7 —
the device size in millimeters. If higher accuracy is required,.” Pac = 10.5 mWistageBP; : Var = 0.7V, Vaz = 0.6 V, Pac
. . . .1 mW/stage.
the correlation between the noise sources can be considered.

il;o_rr;;?éé\ﬁ Itran3|stor MGF4419G, these coefficients are shov\\//|1(1:e size to obtain optimum input capacitar@e, high f;, and

The coefficientK,q; describes the linear dependence bx%gwai’fé tglésrogg_lggg;r;e g;::%rrl]lngzneti/\éorlfrshZ;n;ﬁleelé?o(;rsdke);_
tween the drain current and noise, akigl;» describes the sharpt eenIIv dissipated po per alnd E\o']s'e[ ;}ameters arel eneral
increase of the noise at high drain currents. W ds, dISSIP POWer, ISe p . 9

fﬁ;]r all FETs. Itis possible to operate the transistor at drain volt-

The model was implemented as a user-defined model . L
MDS-HP. As shown in Fig. 10, a high accuracy of the mod&9es a3 low a8y, = 0.5-0.7 V (and even lower), minimize the

can be obtained using (16). When it is not necessary to hav%?a\t'\;g Egnsu::;%z?égn%ﬁtlg:gxe rr?:'enr] h:ﬁhnv;hs'zh '73 OI??h's
global model, the extraction dk,4> can be omitted. Further, y P influéncing minimu ise [7]. !

the accuracy of the global model can be improved by using tﬁgproach of combining the large-signal model with the noise

mixed empirical-table-based approach storing e as table model is followed, it is not necessary to make a special bias-de-
data [22] pendent noise model, which is difficult and time consuming, es-

When all necessary parameters for modeling the transistor ﬁfé:'a"y at cryogenic temperatures. In many circuit simulators,

. o . L s . € noise models are already associated with the large-signal
available, it is possible to optimize the amplifier according t . - . .
P P b g odels and it is sufficient to calibrate the noise part of the model

our specific requirements conceming noise, gain, power dis “a few bias points. Today, procedures for extracting the noise
pation, etc. Figs. 13, 14, and Table | show typical results f P - roday, p 9
mggels are well established, and methods used to extract param-

the main noise parameters and their bias dependence, obtai . S X
using the pre-matched fixture with MGE4419G. The noise terﬁr}ers for the Pospieszalski noise model [14] can be used directly

perature reaches minimum at a drain currgpt = 4-5 mA. or extraction of the noise parameters [see (8), (11), and (12)].
The minimum noise resistanég, is lower at higher drain volt-
ages because of the influence of capacitard¢gsC,q. Never-
theless, even at drain voltag€s, = 0.5-0.7 V, a T,,,;, below The amplifier structure is shown in Fig. 15. In order to
5 K can be achieved with dissipated power of 2—3 mW per traimprove the input match and stability, and to facilitate noise
sistor. Thef, does not change much for drain voltages aboweatching, an inductive source feedback was created by the
Vas > 0.5V and the drain temperatufg; increase as the drainbond wires. The amplifier performance is shown in Fig. 16.
current and drain voltage increase. By using this informatioA, gain of 22—24 dB and a noise temperature of 7-9.5 K were
it is possible to correct the noise models, design the cryogenieasured in the frequency range of 4-8 GHz with total power
amplifier more precisely, and optimize the power dissipatiatissipation of 4 mW with commercial transistors. Better results
and noise performance. Another issue is selecting the right dan be achieved using transistors with higfief6].

I1l. AMPLIFIER DESIGN
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